Первообразная, F(x)	Φ ункция, $f(x)$	Производная, f'(x)
$Ax + C, A \in R$	A (const), $A \in R$	0
$\frac{kx^2}{2} + bx + C$	$kx + b$, $k \in R$, $b \in R$	$k, k \in R$
$\frac{x^3}{3} + C$	χ^2	2x
$\frac{x^4}{4} + C$	χ^3	$3x^2$
$\frac{x^{3}}{3} + C$ $\frac{x^{4}}{4} + C$ $\frac{x^{n+1}}{n+1} + C$	x^n , $n \in N$	nx^{n-1} , $n \in N$
ln x +C	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{(-n+1)x^{n-1}}+C, n\in \mathbb{N}$	$\frac{1}{x^n}$, $n \in N$	$-\frac{n}{x^{n+1}}$, $n \in \mathbb{N}$
$\frac{n\sqrt[n]{x^{n+1}}}{n+1} + C, n \in \mathbb{N}$	$\sqrt[n]{x}$, $n \in N$	$\frac{1}{n\sqrt[n]{x^{n-1}}}, n \in \mathbb{N}$
$\frac{2}{3}x\sqrt{x} + C$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$2\sqrt{x} + C$	$\frac{1}{\sqrt{x}}$	$-\frac{1}{2x\sqrt{x}}$
$\frac{x^{\alpha+1}}{\alpha+1}+C, \alpha\in R, \alpha\neq -1$	x^{α} , $\alpha \in R$	$\alpha x^{\alpha-1}$, $\alpha \in R$
$-\cos x + C$	sin x	cos x
sin x + C	cos x	- sin x
$-\ln(\cos x) + C$	tg x	$\frac{1}{\cos^2 x}$
$ln(sin \ x) + C$	ctg x	$-\frac{1}{\sin^2 x}$
$\frac{1}{2}x + \frac{1}{4}\sin 2x + C$	cos^2x	- sin 2x
$\frac{1}{2}x - \frac{1}{4}\sin 2x + C$	sin²x	sin 2x
$e^x + C$	e^x	e^x
$\frac{a^x}{\ln a} + C$	a^x	a ^x ln a
x ln x - x + C	ln x	$\frac{1}{x}$
$\frac{1}{\ln a}(x\ln x - x) + C$	$log_a x$	$\frac{1}{x \ln a}$
$x \arcsin x + \sqrt{1 - x^2} + C$	arcsin x	$\frac{1}{\sqrt{1-x^2}}$ 1
$x \arccos x - \sqrt{1 - x^2} + C$	arccos x	$-\frac{1}{\sqrt{1-x^2}}$
$x \operatorname{arctg} x - \frac{1}{2} \ln(1 + x^2) + C$	arctg x	$\frac{1}{1+x^2}$
$x \operatorname{arcctg} x + \frac{1}{2} \ln(1 + x^2) + C$	arcctg x	$-\frac{1}{1+x^2}$

Правила дифференцирования

1.
$$(u+v)' = u'+v';$$

2. $(Cu)' = C \cdot u';$
3. $(u \cdot v)' = u' \cdot v + u \cdot v';$
4. $(\frac{1}{v})' = -\frac{v'}{v^2};$
5. $(\frac{u}{v})' = \frac{u' \cdot v - u \cdot v'}{v^2}.$

Производная сложной функции

$$(h(f(x)))' = h'(f(x)) \cdot f'(x)$$

<u>Геометрический смысл производной</u> состоит в том, что значение производной функции в точке x_0 равно угловому коэффициенту касательной (тангенсу угла α), проведенной к графику функции в точке с абсциссой x_0 .

$$k = f'(x_o) = tg \alpha$$

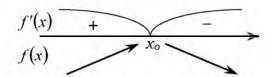
Уравнение касательной к графику функции f(x) в точке с абсциссой x_0 :

$$y = f'(x_o)(x - x_o) + f(x_o)$$

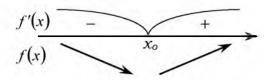
 $\underline{\Phi}$ изический смысл производной состоит в том, что производная от координаты по времени есть \underline{M} скорость:

$$v(t) = s'(t)$$

Если в точке x_o производная функции f(x) меняет знак с «+» на «-», то $x_o - \underline{moчka} \underline{makcumyma}$ функции f(x).



Если в точке x_o производная функции f(x) меняет знак с «—» на «+», то $x_o - \underline{moчka} \underline{muнumyma}$ функции f(x).



Первообразная. Интеграл

Функцию F(x) называют <u>первообразной</u> для функции f(x) на интервале (a; b), если на нем производная функции F(x) равна f(x): F'(x) = f(x).

Операцию, обратную дифференцированию называют интегрированием.

Три правила нахождения первообразных:

- **1**° Если F(x) есть первообразная для f(x), а G(x) первообразная для g(x), то F(x) + G(x) есть первообразная для f(x) + g(x).
- 2° Если F(x) есть первообразная для f(x), а k постоянная, то функция kF(x) есть первообразная для kf(x).
- **3**° *Если* F(x) есть первообразная для f(x), а k и b постоянные, причем $k \neq 0$, то функция $\frac{1}{k}F(kx+b)$ есть первообразная для f(kx+b).

$$\int\limits_{a}^{b}f(x)dx=F(x)|_{a}^{b}=F(b)-F(a)-\phi$$
ормула Ньютона-Лейбница.

<u>Геометрический смысл</u> определенного интеграла заключается в том, что определенный интеграл равен <u>плошади криволинейной трапеции</u>, образованной линиями: сверху ограниченной кривой y = f(x), и прямыми y = 0; x = a; x = b.

