Делимость чисел

Кратным натуральному числу a называют натуральное число, которое делится без остатка на a.

Признаки делимости

- на 10: Если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10.
- на 5: Если запись натурального числа оканчивается цифрами 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.
- на 2: Если запись натурального числа оканчивается четной цифрой, то это число четно (делится без остатка на 2), а если запись числа оканчивается нечетной цифрой, то это число нечетно.
- на 9: Если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.
- на 3: Если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.

Натуральное число называют *простым*, если оно имеет только два делителя: единицу и само это число. Натуральное число называют *составным*, если оно имеет более двух делителей.

Таблица простых чисел

2	3	5	7	11	13	17	19	23	29	31	37
41	43	47	53	59	61	67	71	73	79	83	89
97	101	103	107	109	113	127	131	137	139	149	151
157	163	167	173	179	181	191	193	197	199	211	223
227	229	233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349	353	359
367	373	379	383	389	397	401	409	419	421	431	433
439	443	449	457	461	463	467	479	487	491	499	503
509	521	523	541	547	557	563	569	571	577	587	593
599	601	607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733	739	743
751	757	761	769	773	787	797	809	811	821	823	827
829	839	853	857	859	863	877	881	883	887	907	911
919	929	937	941	947	953	967	971	977	983	991	997

НОД и НОК

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называют наибольшим общим делителем (НОД) этих чисел.

Натуральные числа называют *взаимно простыми*, если их наибольший общий делитель равен 1.

Чтобы найти *наибольший общий делитель* нескольких натуральных чисел, надо:

- 1) разложить их на простые множители;
- 2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
- 3) найти произведение оставшихся множителей.

$$36 = 2 \cdot 2 \cdot 3 \cdot 3$$
; $48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \Rightarrow HOI(36; 48) = 2 \cdot 2 \cdot 3 = 12$.

Hаименьшим общим кратным натуральных чисел a и b называют наименьшее натуральное число, которое кратно и a, и b.

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:

- 1) разложить их на простые множители;
- 2) выписать множители, входящие в разложение одного из чисел;
- 3) добавить к ним недостающие множители из разложений остальных чисел;
- 4) найти произведение получившихся множителей.

$$28 = 2 \cdot 2 \cdot 7$$
; $42 = 2 \cdot 3 \cdot 7 \implies HOK(28, 42) = 2 \cdot 2 \cdot 3 \cdot 7 = 84$.

Действия с обыкновенными дробями

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

$$\frac{12}{20} = \frac{12:4}{20:4} = \frac{3}{5}; \qquad \frac{27}{36} = \frac{27:9}{36:9} = \frac{3}{4}; \qquad \frac{5}{7} = \frac{5\cdot3}{7\cdot3} = \frac{15}{21}; \qquad \frac{11}{15} = \frac{11\cdot5}{15\cdot5} = \frac{55}{75}$$

Сокращение дробей

Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют *сокращением дроби*.

$$\frac{14}{21} = \frac{14:7}{21:7} = \frac{2}{3}; \qquad \frac{27}{36} = \frac{27:9}{36:9} = \frac{3}{4}; \qquad \frac{35}{70} = \frac{35:35}{70:35} = \frac{1}{2}; \qquad \frac{48}{36} = \frac{48:12}{36:12} = \frac{4}{3}$$

Приведение дробей к общему знаменателю

Чтобы привести дроби к наименьшему общему знаменателю, надо:

1) найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем;

- 2) разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель;
- 3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

$$\frac{3}{7}u\frac{7}{2}u \Rightarrow \frac{5}{7} = \frac{5 \cdot 3}{7 \cdot 3} = \frac{15}{21}u \frac{2}{3} = \frac{2 \cdot 7}{3 \cdot 7} = \frac{14}{21}.$$

Сравнение, сложение и вычитание дробей с разными знаменателями

$$\frac{\frac{3}{5}}{7} u^{\frac{7}{2}} \frac{\frac{7}{2}}{3} \Rightarrow \frac{5}{7} = \frac{5 \cdot 3}{7 \cdot 3} = \frac{15}{21} u \quad \frac{2}{3} = \frac{2 \cdot 7}{3 \cdot 7} = \frac{14}{21} \Rightarrow \frac{15}{21} > \frac{14}{21} \Rightarrow \frac{5}{7} > \frac{2}{3};$$

$$\frac{\frac{3}{5}}{12} u^{\frac{4}{4}} \frac{\frac{4}{9}}{9} \Rightarrow \frac{5}{12} = \frac{5 \cdot 3}{12 \cdot 3} = \frac{15}{36} u \quad \frac{4}{9} = \frac{4 \cdot 4}{9 \cdot 4} = \frac{16}{36} \Rightarrow \frac{15}{36} < \frac{16}{36} \Rightarrow \frac{5}{12} < \frac{4}{9};$$

$$\frac{\frac{4}{5}}{6} + \frac{3}{8} = \frac{5 \cdot 4 + 7 \cdot 3}{24} = \frac{20 + 21}{24} = \frac{41}{24} = 1\frac{17}{24};$$

$$\frac{\frac{4}{5}}{15} - \frac{\frac{5}{5}}{12} = \frac{8 \cdot 4 - 5 \cdot 5}{60} = \frac{32 - 25}{60} = \frac{7}{60}.$$

Сложение и вычитание смешанных чисел

Чтобы сложить смешанные числа, надо:

- 1) привести дробные части этих чисел к наименьшему общему знаменателю:
- 2) отдельно выполнить сложение целых частей и отдельно дробных частей.

Если при сложении дробных частей получилась неправильная дробь, выделить целую часть из этой дроби и прибавить ее к полученной целой части.

$$5+4\frac{3}{5}=9\frac{3}{5}; \qquad 4\frac{3}{5}+6\frac{1}{5}=(4+6)+\left(\frac{3}{5}+\frac{1}{5}\right)=10\frac{4}{5};$$

$$7\frac{4}{5}+4\frac{2}{7}=(7+4)+\left(\frac{4}{5}+\frac{2}{7}\right)=11+\frac{4\cdot 7+2\cdot 5}{35}=11+\frac{38}{35}=11+1\frac{3}{35}=12\frac{3}{35}.$$

Чтобы выполнить вычитание смешанных чисел, надо:

- 1) привести дробные части этих чисел к наименьшему общему знаменателю; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить ее в неправильную дробь, уменьшив на единицу целую часть;
- 2) отдельно выполнить вычитание целых частей и отдельно дробных частей.

$$6\frac{7}{8} - 3 = 3\frac{7}{8}; \qquad 9 - 4\frac{6}{7} = 8\frac{7}{7} - 4\frac{6}{7} = (8 - 4) + \left(\frac{7}{7} - \frac{6}{7}\right) = 4\frac{1}{7};$$

$$8\frac{3}{4} - 2\frac{1}{3} = (8 - 2) + \left(\frac{3}{4} - \frac{1}{3}\right) = 6 + \frac{3 \cdot 3 - 1 \cdot 4}{12} = 6 + \frac{5}{12} = 6\frac{5}{12};$$

$$5\frac{5}{12} - 3\frac{7}{8} = (5 - 3) + \left(\frac{5}{12} - \frac{7}{8}\right) = 2 + \frac{5 \cdot 2 - 7 \cdot 3}{24} = 1\frac{24}{24} + \frac{10 - 21}{24} = 1 + \frac{24 + 10 - 21}{24} = 1\frac{13}{24}.$$

Умножение обыкновенных дробей

Чтобы *умножить дробь на натуральное число*, надо ее числитель умножить на это число, а знаменатель оставить без изменения.

$$\frac{2}{5} \cdot 7 = \frac{2}{5} \cdot \frac{7}{1} = \frac{2 \cdot 7}{5 \cdot 1} = \frac{14}{5} = 2\frac{4}{5}; \qquad \frac{7}{24} \cdot 8 = \frac{7}{24} \cdot \frac{8}{1} = \frac{7 \cdot 8}{24 \cdot 1} = \frac{56}{24} = \frac{7}{3} = 2\frac{1}{3}.$$

Чтобы умножить дробь на дробь, надо:

- 1) найти произведение числителей и произведение знаменателей этих дробей;
- 2) первое произведение записать числителем, а второе знаменателем.

$$\frac{5}{6} \cdot \frac{1}{8} = \frac{5 \cdot 1}{6 \cdot 8} = \frac{5}{48}; \qquad \frac{5}{8} \cdot \frac{4}{15} = \frac{5 \cdot 4}{8 \cdot 15} = \frac{1 \cdot 1}{2 \cdot 3} = \frac{1}{6}; \qquad \frac{9}{25} \cdot \frac{5}{18} = \frac{9 \cdot 5}{25 \cdot 18} = \frac{1 \cdot 1}{5 \cdot 2} = \frac{1}{10}$$

Для того чтобы выполнить *умножение смешанных чисел*, надо их записать в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.

$$2\frac{3}{4} \cdot 7 = \frac{11}{4} \cdot \frac{7}{1} = \frac{11 \cdot 7}{4 \cdot 1} = \frac{77}{4 \cdot 1} = 19\frac{1}{4}; \qquad 1\frac{4}{5} \cdot 3\frac{1}{3} = \frac{9}{5} \cdot \frac{10}{3} = \frac{9 \cdot 10}{5 \cdot 3} = \frac{3 \cdot 2}{1 \cdot 1} = \frac{6}{1} = 6;$$
$$9\frac{3}{5} \cdot 1\frac{5}{12} = \frac{48}{5} \cdot \frac{17}{12} = \frac{48 \cdot 17}{5 \cdot 12} = \frac{4 \cdot 17}{5 \cdot 1} = \frac{68}{5} = 13\frac{3}{5}.$$

Чтобы умножить смешанное число на натуральное число, можно:

- 1) умножить целую часть на натуральное число;
- 2) умножить дробную часть на это натуральное число;
- 3) сложить полученные результаты.

$$2\frac{3}{4} \cdot 7 = \left(2 + \frac{3}{4}\right) \cdot 7 = 2 \cdot 7 + \frac{3}{4} \cdot 7 = 14 + \frac{21}{4} = 14 + 5\frac{1}{4} = 19\frac{1}{4}$$

Нахождение дроби от числа

Чтобы найти дробь от числа, нужно умножить число на эту дробь.

0,5 от 80 равны 80 · 0,5 = 40;
$$\frac{2}{3}$$
 от 6 равны $6 \cdot \frac{2}{3} = \frac{6}{1} \cdot \frac{2}{3} = \frac{6 \cdot 2}{1 \cdot 3} = \frac{2 \cdot 2}{1 \cdot 1} = 4$;

$$\frac{3}{8}$$
 от $\frac{32}{81}$ равны $\frac{3}{8} \cdot \frac{32}{81} = \frac{3}{8} \cdot \frac{32}{81} = \frac{3 \cdot 32}{8 \cdot 81} = \frac{1 \cdot 4}{1 \cdot 27} = \frac{4}{27}$;

12% от 45 равны $0.12 \cdot 45 = 5.4$; 0.8% от 2.5 равны $0.008 \cdot 2.5 = 0.02$.

Взаимно обратные числа

Два числа, произведение которых равно 1, называют *взаимно* обратными $\left(\text{например}, \frac{7}{15} u \frac{15}{7}; \frac{31}{79} u \frac{79}{31}; 5 u \frac{1}{5} \right)$.

Деление обыкновенных дробей

Чтобы *разделить* одну дробь на другую, надо делимое умножить на число, обратное делителю.

$$\frac{3}{4} : \frac{7}{8} = \frac{3}{4} \cdot \frac{8}{7} = \frac{3 \cdot 8}{4 \cdot 7} = \frac{3 \cdot 2}{1 \cdot 7} = \frac{6}{7}; \qquad \frac{5}{12} : \frac{25}{48} = \frac{5}{12} \cdot \frac{48}{25} = \frac{5 \cdot 48}{12 \cdot 25} = \frac{1 \cdot 4}{1 \cdot 5} = \frac{4}{5};$$

$$9 \cdot \frac{3}{5} : 2 \cdot \frac{2}{11} = \frac{48}{5} : \frac{24}{11} = \frac{48}{5} \cdot \frac{11}{24} = \frac{48 \cdot 11}{5 \cdot 24} = \frac{2 \cdot 11}{5 \cdot 1} = \frac{22}{5} = 4 \cdot \frac{2}{5}.$$

Нахождение числа по его дроби

Чтобы найти число *по данному значению его дроби*, надо это значение разделить на дробь.

Если $\frac{2}{3}$ некоторого числа составляет 500, то само число равно

$$500: \frac{2}{3} = \frac{500}{1} \cdot \frac{3}{2} = \frac{500 \cdot 3}{1 \cdot 2} = \frac{250 \cdot 3}{1 \cdot 1} = \frac{750}{1} = 750.$$

Отношения и пропорции

Частное двух чисел называют *отношением* этих чисел. Равенство двух <u>отношений</u> называют *пропорцией*.

$$\boxed{\frac{a}{b} = \frac{c}{d}}$$
 или $\boxed{a:b=c:d}$, где числа a и d называют крайними членами

пропорции, c и b – средними членами пропорции.

Основное свойство пропорции: в верной пропорции произведение крайних членов равно произведению средних. $a \cdot d = b \cdot c$

Нахождение неизвестного члена пропорции $\frac{a}{b} = \frac{c}{d}$:

$$a = \frac{bc}{d}$$
; $b = \frac{ad}{c}$; $c = \frac{ad}{b}$; $d = \frac{bc}{a}$.

Если в верной пропорции поменять местами средние члены или крайние члены, то получившиеся новые пропорции тоже верны.

Отношение длины отрезка на карте к длине соответствующего отрезка на местности называют *масштабом* карты.

Длина окружности и площадь круга

OM = r -радиус

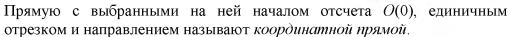
AB = d -диаметр

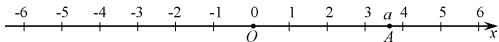
d = 2r; r = d/2

 $C = 2\pi r = \pi d -$ длина окружности

 $S = \pi r^2 = \pi d^2/4 -$ площадь круга

Координатная прямая





Число, показывающее положение точки на прямой, называют координатой этой точки (обозначают A(a)).

Противоположные числа

Два числа, отличающиеся друг от друга только знаками, называют противоположными числами $\left(\text{например}, 4 \text{ u} - 4; 6,2 \text{ u} - 6,2; -\frac{31}{79} \text{ u} \frac{31}{79} \right)$.

Натуральные числа, противоположные им числа и нуль называют uent = ue

Модуль числа

Modyлем числа a называют расстояние (в единичных отрезках) от начала координат до точки A(a) (обозначают |a|).

$$|6,8| = 6,8$$
; $|-34,9| = 34,9$; $|-6\frac{4}{7}| = 6\frac{4}{7}$; $|567,01| = 567,01$; $|0| = 0$.

Противоположные числа имеют равные модули: |a| = |-a|.

Уравнения, содержащие знак модуля

$$|x| = 17$$
 $|x| = -25,6$ $|x| = 0$
 $x = 17$ unu $x = -17$. Hem pewehuŭ. $x = 0$.

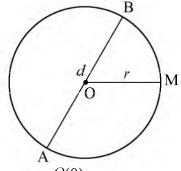
Действия с положительными и отрицательными числами

Сложение отрицательных чисел

Чтобы сложить два отрицательных числа, надо:

- 1) сложить их модули;
- 2) поставить перед полученным числом знак «-».

$$-6.8 + (-5.7) = -(6.8 + 5.7) = -12.5$$
; $-325 + (-475) = -(325 + 475) = -800$.



Сложение чисел с разными знаками

Чтобы сложить два числа с разными знаками, надо:

- 1) из большего модуля слагаемых вычесть меньший;
- 2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

$$3.9 + (-5.7) = -(5.7 - 3.9) = -1.8;$$
 $-235 + 560 = 560 - 235 = 325.$

Вычитание

Чтобы *из данного числа вычесть другое*, надо к уменьшаемому прибавить число, противоположное вычитаемому: a - b = a + (-b).

$$16,8-24,5=16,8+(-24,5)=-(24,5-16,8)=-7,7;$$

$$-19-25=-19+(-25)=-(19+25)=-44;$$

$$-23,5-(-54,3)=-23,5+54,3=54,3-23,5=30,8$$

Умножение

Чтобы *перемножить* $\partial 6a$ числа с разными знаками, надо перемножить модули этих чисел и поставить перед полученным числом знак «—».

$$3.5 \cdot (-4) = -(3.5 \cdot 4) = -14$$
; $-25 \cdot 60 = -(25 \cdot 60) = -1500$; $-50 \cdot 0 = 0$.

Чтобы *перемножить два отрицательных числа*, надо перемножить их модули.

$$-6.5 \cdot (-2) = |-6.5| \cdot |-2| = 6.5 \cdot 2 = 13$$
; $-26 \cdot (-8) = |-26| \cdot |-8| = 26 \cdot 8 = 208$.

Деление

Чтобы *разделить отрицательное число на отрицательное*, надо разделить модуль делимого на модуль делителя.

$$-8,4:(-4)=|-8,4|:|-4|=8,4:4=2,1;$$
 $-6:(-9)=|-6|:|-9|=\frac{6}{9}=\frac{2}{3};$

$$-\frac{4}{9} : \left(-\frac{8}{27}\right) = \left|-\frac{4}{9}\right| : \left|-\frac{8}{27}\right| = \frac{4}{9} : \frac{8}{27} = \frac{4}{9} \cdot \frac{27}{8} = \frac{4 \cdot 27}{9 \cdot 8} = \frac{1 \cdot 3}{1 \cdot 2} = \frac{3}{2} = 1,5.$$

При делении чисел с разными знаками, надо:

- 1) разделить модуль делимого на модуль делителя;
- 2) поставить перед полученным числом знак «-».

$$84: (-7) = |84|: |-7| = 84: 7 = 12; \quad -6: 120 = |-6|: |120| = \frac{6}{120} = \frac{1}{20} = 0.05;$$

$$\frac{7}{3} : \left(-\frac{28}{27}\right) = \left|\frac{7}{3}\right| : \left|-\frac{28}{27}\right| = \frac{7}{3} : \frac{28}{27} = \frac{7}{3} \cdot \frac{27}{28} = \frac{7 \cdot 27}{3 \cdot 28} = \frac{1 \cdot 9}{1 \cdot 4} = \frac{9}{4} = 2\frac{1}{4} = 2,25.$$

При делении нуля на любое число, не равное нулю, получается нуль. 0:(-67)=0. Делить на нуль нельзя!

Рациональные числа

Число, которое можно записать в виде отношения $\frac{m}{n}$, где m – целое

число, а n — натуральное число, называют рациональным числом.

$$\left(Hanpumep, \quad 5 = \frac{5}{1}; \quad -7.8 = -7\frac{8}{10} = \frac{-78}{10}; \quad 0 = \frac{0}{1}; \quad -\frac{2}{5} = \frac{-2}{5}. \right)$$

Сумма, разность, произведение и частное (если делитель отличен от 0) рациональных чисел тоже рациональное число (обозначают буквой Q).

Свойства действий с рациональными числами

Сложение рациональных чисел обладает переместительным и сочетствами:

$$a+b=b+a$$
; $a+(b+c)=(a+b)+c=a+b+c$

Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю:

$$a+0=a$$
; $a+(-a)=0$

Умножение рациональных чисел тоже обладает *переместительным* и *сочетательным* свойствами:

$$ab = ba$$
; $a(bc) = (ab)c$.

Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1.

$$\boxed{a \cdot 1 = a}$$
; $\boxed{a \cdot \frac{1}{a} = 1, ecnu \ a \neq 0}$.

Умножение числа на нуль дает в произведении нуль, т. е. для любого рационального числа <math>a имеем:

$$a \cdot 0 = 0$$

Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю:

если $a \cdot b = 0$, то либо a = 0, либо b = 0 (может быть, что и a = 0, и b = 0).

Умножение рациональных чисел обладает и распределительным свойством относительно сложения и вычитания:

$$(a+b)\cdot c = ac+bc$$
; $(a-b)\cdot c = ac-bc$

Раскрытие скобок

Если перед скобками стоит знак (+), то можно раскрыть скобки, сохранив знаки слагаемых, стоящих в скобках.

Чтобы раскрыть скобки, перед которыми стоит знак (-), надо раскрыть скобки поменяв знаки всех слагаемых в скобках на противоположные.

$$(-a+2b) = -a+2b;$$
 $-(3k-7p) = -3k+7p;$ $+(-5c+8d) = -5c+8d.$

Подобные слагаемые

Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми. Чтобы сложить (или говорят: привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть:

$$\underline{-a} + \underline{2b} + \underline{4a} - \underline{6b} + 7 = a(-1+4) + b(2-6) + 7 = 3a - 4b + 7;$$

$$\underline{8k} - \underline{6m} + \underline{3k} + \underline{6m} - \underline{5k} - 9 + \underline{m} = k(8+3-5) + m(-6+6+1) - 9 = 6k + m - 9;$$

Решение уравнений

Корни уравнения не изменяются, если его обе части умножить или разделить на одно и то же число, не равное нулю.

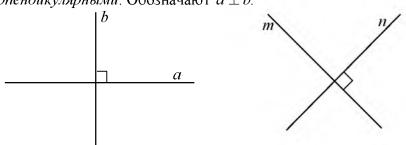
Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак.

Уравнение, которое можно привести к виду ax = b, где $a \neq 0$ с помощью переноса слагаемых и приведения подобных слагаемых, называют *линейным* уравнением с одним неизвестным.

Координаты на плоскости

Перпендикулярные прямые

Две прямые, образующие при пересечении прямые углы, называют nерпендикулярными. Обозначают $a \perp b$.



Параллельные прямые

Две непересекающиеся прямые на плоскости называют параллельными.

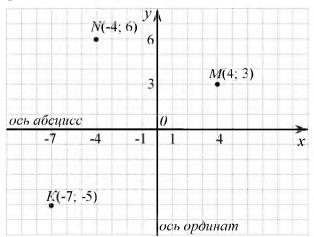
Пишут: $a \parallel b$. Если $a \parallel b$, то $b \parallel a$. p

Если две прямые в плоскости перпендикулярны третьей прямой, то они параллельны. Если $m \perp p$ и $n \perp p$, то $m \parallel n$.

Через *каждую точку плоскости*, не лежащую на данной прямой, можно провести *только одну прямую*, *параллельную* данной прямой.

Координатная плоскость

На плоскости проводят две перпендикулярные координатные прямые x и y, которые пересекаются в начале отсчета — точке O. Эти прямые называют *системой координат на плоскости*, а точку O — *началом координат*. Плоскость, на которой выбрана система координат, называют *координатной плоскостью*.



Каждой точке M на *координатной плоскости* соответствует пара чисел: ее *абсиисса* и *ордината*. Наоборот, каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются *координатами*.

Положение точки M определяется парой чисел (x; y). Эту пару чисел называют координатами точки M.

Число x называют абсииссой точки M, а число y называют ординатной точки M. Координатную прямую x называют осью абсиисс, а координатную прямую y – осью ординати.